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The specific neural bases of disorders of consciousness (DOC) are still not well understood. Some studies have
suggested that functional and structural impairments in the default mode networkmay play a role in explaining
these disorders. In contrast, others have proposed that dysfunctions in the anterior forebrain mesocircuit involv-
ing striatum, globus pallidus, and thalamus may be the main underlying mechanism. Here, we provide the first
report of structural integrity offiber tracts connecting the nodes of themesocircuit and the defaultmode network
in 8 patientswith DOC.We found evidence of significant damage to subcortico-cortical and cortico-corticalfibers,
whichweremore severe in vegetative state patients and correlatedwith clinical severity as determined by Coma
Recovery Scale—Revised (CRS-R) scores. In contrast, fiber tracts interconnecting subcortical nodes were not
significantly impaired. Lastly, we found significant damage in all fiber tracts connecting the precuneus with
cortical and subcortical areas. Our results suggest a strong relationship between the default mode network –
and most importantly the precuneus – and the anterior forebrain mesocircuit in the neural basis of the DOC.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Disorders of consciousness (DOC) can result from a variety of focal
and widespread patterns of injuries but exact pathological taxonomies
for diagnosis have not yet been developed (Giacino et al., 2014). Never-
theless, impairments in thalamocortical and frontoparietal networks
appear as consistent findings in recent neuroimaging studies (Cauda
et al., 2009; Crone et al., 2013, 2015; Hannawi et al., 2015). Specifically,
DOC patients show functional (Cauda et al., 2009; Soddu et al., 2012;
Vanhaudenhuyse et al., 2010), metabolic (Laureys et al., 1999) and
structural (Fernandez-Espejo et al., 2012) disconnections within
thalamocortical and cortico-cortical regions of the default mode network
(DMN), which are correlated with clinical severity (Fernandez-Espejo
et al., 2012; Vanhaudenhuyse et al., 2010). A recent study has further
stressed the importance of thalamocortical connections by revealing spe-
cific patterns of impaired metabolic activity in the anterior forebrain
mesocircuit (Fridman et al., 2014). The so-called mesocircuit hypothesis
proposes that a loss of excitatory output from the central thalamus to dif-
fuse cortical areas has a causative role in DOC (Schiff, 2008, 2010; Schiff
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and Posner, 2007). Such a loss is proposed to be caused by circuit dysfunc-
tion wherein inhibitory striatal output to the globus pallidus is lost,
resulting in pallidal disinhibition and subsequent excessive inhibition of
the thalamus. This mechanism is theorized to be driven by disinhibition
of the globus pallidus interna specifically. Nevertheless, likely due to
limitations in spatial resolution of the data, the above metabolic study
(Fridman et al., 2014) considered the globus pallidus as a whole.

While recent functional neuroimaging studies seem to support the
predictions of the mesocircuit model (see Giacino et al., 2014 for a re-
view), it is unknown whether the hypothesized deafferentations are
functional or anatomical. Structural impairments in thalamocortical
and cortico-cortical fiber tracts of the DMN have been previously
observed in DOC patients (Fernandez-Espejo et al., 2012). However, to
our knowledge, the integrity of direct structural connections of the
mesocircuit has not been investigated. A mechanistic understanding of
the specific structural neural bases underlying DOC will be essential
for the development of objective prognostic and diagnostic biomarkers.

The purpose of our study was to investigate structural integrity of
the mesocircuit and its cortical projections in DOC patients, in order to
lend structural support to observed differences in functional and meta-
bolic brain activity in this poorly understood patient population. We
used diffusion tensor imaging (DTI) tractography to reconstruct and
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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assess the integrity of white matter connections between the nodes of
themesocircuit and several cortical regions in vivo in a group of DOCpa-
tients, as compared with healthy participants. DOC patients included
those in the vegetative state (VS), minimally conscious state (MCS),
and emerging-from-minimally conscious state (EMCS). We predicted
that subcortico-subcortical connections would show less evidence of
specific structural damage than subcortico-cortical and cortico-cortical
connections in DOC patients. This prediction was based on several
factors: 1) subcortico-cortical and cortico-cortical connections were
previously shown to have evidence of significant structural damage in
DOC patients (Fernandez-Espejo et al., 2012), 2) long range connections
may be anatomically more susceptible to both diffuse axonal injury
(Adams et al., 1982; Blumbergs et al., 1989; Johnson et al., 2013) and
hypoxic–ischemic injury (Saab et al., 2013), and 3) the above described
subcortical metabolic patterns (Fridman et al., 2014) suggested inhibi-
tory pallidothalamic fibers (i.e. subcortico-subcortical) were intact.

2. Materials and methods

2.1. Participants

A convenience sample of 16 DOC patients participated in our study
between February 2012 and November 2014. Inclusion criteria for the
study were adult patients with a diagnosis of chronic DOC, or EMCS at
the time of the study. The only exclusion criterion was unsuitability to
enter the MRI environment. Independent functional and structural
datasets from subsets of this cohort have been previously reported
(Cruse et al., 2012; Fernandez-Espejo and Owen, 2013; Gibson et al.,
2014; Naci and Owen, 2013; Naci et al., 2014). From these, 8 patients
(4 VS patients, 3 MCS, and one EMCS) met the data quality criteria
(see Section 2.3 below) and were included in the study. Patients were
clinically assessed with repeated administrations of the Coma Recovery
Scale—Revised (CRS-R; Giacino et al., 2004) over a 5 day visit to our
center. The highest score achieved by each patient across the different
examinations is included in Supplementary Information Table S1.
Demographic and clinical data from the patients are summarized in
Table 1. A group of 8 sex- (3 females) and age-matched healthy control
subjects were also recruited for the study. The Health Sciences Research
Ethics Board of The University of Western Ontario provided ethical ap-
proval for the study. All volunteers gave written informed consent and
were paid for their participation in the experiment. Written assent
was obtained from the legal guardian for all patients.

2.2. MRI acquisition

Diffusion-weighted imageswere acquired in a 3 TMRI scanner at the
Centre for Functional and Metabolic Mapping (CFMM) at Robarts Re-
search Institute (London, Canada). Patients were recruited over a time
span of 2.5 years, during which the CFMM upgraded their 3 T scanner.
Twelve participants (6 patients and 6 healthy controls) were scanned
before the upgrade, in a Magnetom Trio system (Siemens, Erlangen,
Germany), and the remaining four (2 patients and 2 healthy controls)
Table 1
Summary of demographic and clinical characteristics of patients and controls.

Characteristic Healthy controls Patients Stat

Age, years, mean ± SD 26 ± 2 35 ± 11 t =
Sex, M/F 5/3 5/3
Time post-ictus, days, mean ± SD 3523 ± 2914
VS/MCS/EMCS 4/3/1
TBI/HBI 3/5
Scanner: Trio/Prisma 6/2 6/2

SD: standard deviation, VS: vegetative state, MCS: minimally conscious state, EMCS: emerging
injury.

a Identifies the EMCS patient.
were scanned in the new system: aMagnetomPrisma system (Siemens,
Erlangen, Germany). This resulted in a balanced distribution of patients
and healthy controls across the two different scanners. Similarly, the
proportion between clinically conscious and clinically unconscious pa-
tients was also maintained across scanners. Diffusion-weighted images
included sensitizing gradients applied in 64 non-collinear directions
with a b-value = 700 s/mm2, using an EPI sequence (Trio system:
TR=8700ms, TE=77ms, voxel size=2×2× 2mm, no gap, 77 slices;
Prisma system: TR= 9600ms, TE= 77ms, voxel size= 2 × 2 × 2mm,
no gap, 76 slices). A high-resolution, T1-weighted, 3-dimensional mag-
netization prepared rapid acquisition gradient echo (MPRAGE) image
was also acquired (Trio system: TR= 2300ms, TE= 2.98ms, inversion
time=900ms,matrix size=256×240, voxel size=1×1×1mm,flip
angle = 9°; Prisma system: TR = 2300 ms, TE = 2.32 ms, inversion
time = 900 ms, matrix size = 256 × 256, voxel size = 1 × 1 × 1 mm,
flip angle = 8°).

2.3. DTI analyses

Motion related artifacts are a common methodological problem
when working with DOC patients. Quality control of the data was per-
formed by one of the authors (N.D.L.), who carefully inspected all
diffusion-weighted raw images for the presence of motion related arti-
facts or macrostructural lesions or abnormalities in the regions of inter-
est. Four DOC patients were excluded after visual inspection of DTI data
revealed large artifacts due to excessive movement inside the scanner.
An additional four DOC patients were excluded due to widespread and
severe structural brain abnormalities that precluded accurate identifica-
tion of either subcortical (n= 1), or both subcortical and cortical regions
(n = 3) in the MRI data. All exclusions were made prior to fiber tracking
and were made blinded to the clinical diagnosis of the patients.

Data preprocessing and analysiswere performedusing the FSLDiffu-
sion Toolbox (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), following a similar
pipeline as Fernandez-Espejo et al. (2012) and Fernandez-Espejo et al.
(2015). Pre-processing steps included eddy-current correction
(Behrens et al., 2003a) and skull and non-brain tissue stripping using
the Brain Extraction Tool (Smith, 2002). Fractional anisotropy (FA)
maps were obtained using FSL Diffusion Toolbox (FDT; Behrens et al.,
2003a). Diffusion modeling and probabilistic tractography were carried
out using FDT. Fiber tracking between regions of interest (ROIs) was
performed in native space for each subject (see Table 2 for summary
of all fiber tracts), using FSL probtrackX (Jenkinson et al., 2012; Smith
et al., 2004;Woolrich et al., 2009). Trackingwas done in both directions
between each set of two ROIs, and the resulting probability distribution
was averaged and thresholded to 2% of themaximum intensity for each
subject, in order to remove very-low probability paths. While there is
currently no convention about the precise percentage, 2% has proven
successful in previous studies of both healthy and pathological popula-
tions (Fernandez-Espejo et al., 2012; Sala-Llonch et al., 2010). The
resulting tracts were visually inspected by one of the authors (N.D.L.)
for correspondence with known anatomy and to ensure that our ap-
proach did not remove anatomically viable fibers.
istic P Diagnostic categories

VS MCS & EMCS Statistic P

−2.2 n.s. 31 ± 11 38 ± 10 t = 1.03 n.s.
3/1 2/2a

2576 ± 3348 4472 ± 2492 t = 0.91 n.s.

2/2 1a/3
3/1 3/1a

fromminimally conscious state, TBI: traumatic brain injury, HBI: hypoxic–ischemic brain

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/


Table 2
Fiber tracts. A total of 12 left hemisphere, 12 right hemisphere and 1 midline fiber
tract(s) were studied. ‘Composite’ fiber tracts in bold consisted of the fiber tracts listed
below them. Stri: striatum, GP: globus pallidus, Tha: thalamus, FMC: frontalmedial cortex,
DLPFC: dorsolateral prefrontal cortex, PCu: precuneus, TPJ: temporoparietal junction.

Subcortico-subcortical fiber tract

Stri–GP
GP–Tha
Tha–Stri

Subcortico-cortical fiber tract
Tha–FMC
Stri–FMC
Tha-DLPFC
Stri–DLPFC
Tha–PCu
Stri–PCu

Lateralized cortico-cortical fiber tract
PCu–TPJ
FMC–DLPFC
TPJ–DLPFC

Midline cortico-cortical fiber tract
FMC–PCu

Fig. 1.Group probabilitymaps of reconstructed tracts in healthy controls. Maps are thresholded
reconstruction are shown in blue. Images displayed in Montreal Neurological Institute standar
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2.4. ROI masking

Regions of interest (ROIs) were obtained in a semi-automatic way
and included subcortical structures and cortical areas. Subcortical struc-
tures were the main nodes of the anterior forebrain mesocircuit, as de-
scribed in Schiff (2008): thalamus, globus pallidus (including both the
internal and external subdivisions in a combined ROI), putamen, and
caudate nucleus. The putamen and caudate nucleuswere considered to-
gether as striatum to directly reflect the proposed schema of the anteri-
or forebrain mesocircuit hypothesis (Schiff, 2008, 2010). The globus
pallidus could not be reliably separated into internal and external seg-
ments due to limitations in anatomical resolution. All subcortical struc-
tures were defined individually in the left and right hemispheres and
fiber trackingwas performed to ipsilateral subcortical and cortical struc-
tures, as well as midline cortical structures, according to the schematic
displayed in Fig. 3. Subcortical masks for each ROI were generated
using the Harvard-Oxford Subcortical Structural Atlas (Frazier et al.,
2005; Goldstein et al., 2007) on the MNI152 standard brain, and then
unwarped to each subject's native space using the FSL linear registration
tool, FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002), in a
manner consistent with previous work (Fernandez-Espejo et al.,
2012). A 2-step registration process within FLIRT (Jenkinson and
at presence in at least 25% of healthy subjects. Regions of interest used for the tractography
d stereotaxic space, and coordinates are provided for each slice.



Fig. 2. Fractional anisotropy of composite fiber tracts in DOC patients and healthy controls. Middle line ismedian, lower box bound first quartile, upper box bound third quartile, whiskers
95% C.I., open circles outliers from C.I. Group main effect *p b 0.05, **p b 0.01. Sub: subcortical, Cor: cortical.
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Smith, 2001; Jenkinson et al., 2002) was used with b= 0 image as low-
resolution image, T1 as high resolution image, and the MNI152 1 mm
template as the reference image. The inverse of the resulting transfor-
mation matrix was applied to each mask to unwarp it to native DTI
space in each subject. After registration in native space, each mask
wasmanually corrected in FSL View to ensure a closematchwith its an-
atomical boundaries. Because of the close proximity of these subcortical
structures, care was taken to ensure that there was no overlap between
Fig. 3. Spearman correlations of CRS-R scores and composite fiber tract FA values for DOC patie
fiber tract.
the masks for each ROI in each subject (e.g. no overlap between globus
pallidus and putamen masks). A stereotactic atlas of the basal ganglia
and thalamus was used as qualitative visual aid and external reference
to help define the appropriate boundaries of each ROI (Morel, 2007).
For the thalamus, the transverse plane mean diffusivity (MD) map
was used to define the thalamo-ventricular border (medial border of
thalamus), and the transverse plane FA map was used to define the
border between the thalamus and internal capsule (lateral border of
nts. Sub-Cor: subcortico-cortical composite fiber tract, Cor-Cor: cortico-cortical composite
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thalamus). After approximate segmentation in the transverse plane, the
frontal plane FAmapwas used to define the shape of the thalamusmore
precisely. For the caudate, the transverse planeMDmapwas used to de-
fine the border between the caudate and the lateral ventricle, and the
transverse plane FA map was used to define the border between the
caudate and the internal capsule. The frontal plane FA map was used
to define the shape of the caudate more precisely. MD and FA maps
failed to provide adequate contrast for accurate delineation of anatom-
ical boundaries of the putamen and globus pallidus. The T1 image ac-
quired for each subject was registered to DTI space using FLIRT
(Jenkinson and Smith, 2001; Jenkinson et al., 2002), and then visually
inspected to ensure a correct alignment with the FA and MD maps.
The boundaries of the unwarped putamen and globus pallidus ROIs
were checked against both the registered T1 image and the FA map
and manually corrected when necessary. This semi-automated method
of subcortical ROI segmentation was chosen over fully automatic
segmentation techniques because of the large anatomical variation
found in DOC patient brains. Although automatic segmentation tools
have been used previously for delineating the thalamus in DOC patients
(Fernandez-Espejo et al., 2010; Lutkenhoff et al., 2015), the segmenta-
tion tools themselves are built on large collections of manually seg-
mented regions (Patenaude et al., 2011). For consistency in our
approaches for cortical and subcortical masking, we used the previously
described semi-automatic method for both DOC patients and healthy
controls.

While themesocircuit model does not define specific cortical targets
for its thalamic projections, we feel that cortical regions in the DMN are
good candidates, due to the vast evidence implicating them in the neu-
ral basis of DOC (Cauda et al., 2009; Crone et al., 2013, 2015;
Fernandez-Espejo et al., 2012; Fridman et al., 2014; Laureys et al.,
1999; Soddu et al., 2012; Vanhaudenhuyse et al., 2010). Cortical ROIs
thus included the precuneus (PCu), temporoparietal junction (TPJ),
and frontal medial cortex (FMC). Additionally, we included the dorso-
lateral prefrontal cortex (DLPFC) as a potential cortical target for the fol-
lowing reasons: first, it is known to be systematically recruited by broad
range of cognitive demands (Duncan and Owen, 2000); second, it has
proven a key region for revealing covert awareness in behaviorally
unresponsive patients (Naci and Owen, 2013; Naci et al., 2014); and
finally, it has strong structural connections with the dorsomedial
thalamic nucleus (Klein et al., 2010), which alongside the intralaminar
nuclei comprises the central thalamus (Schiff, 2008), and is the thalamic
nucleus that suffers from the most severe damage in VS patients
(Fernandez-Espejo et al., 2010; Lutkenhoff et al., 2013; Maxwell et al.,
2004, 2006).

Similarly to the above, where possible, cortical ROIs were generated
from the Harvard-Oxford Cortical Atlas (Desikan et al., 2006; Makris
et al., 2006), using a threshold of 50% in order to create a more con-
servative estimate. Theonly exceptionwas theDLPFCwhich is not avail-
able in the FSL package. Due to the poorly defined structural boundaries
of this area (Cieslik et al., 2013), we used the functional atlas generated
by Shirer et al. (2011) (available here http://findlab.stanford.edu/
functional_ROIs.html) to define this ROI. Specifically, the left and right
DLPFCmasksweremanually extracted from their corresponding execu-
tive function networks.

The cortical masks were registered to each subject's native space
using FLIRT, and following the same pipeline as for the subcortical
masks above (Jenkinson and Smith, 2001; Jenkinson et al., 2002). The
fitting of all masks was carefully inspected by author N.D.L., and manu-
ally corrected when needed.

To reducemultiple comparisons and to address our primary hypoth-
esis, we created 3 ‘composite’ masks for each hemisphere including
subcortico-subcortical, subcortico-cortical, and lateralized cortico-
cortical fiber tracts respectively for each subject (see Table 1 for individ-
ual tracts included in ‘composite’ fiber tracts). As the PCu and FMC are
midline structures, the fiber tract connecting them was also considered
midline and was analyzed separately, as part of the midline cortico-
cortical mask. After analysis of composite fiber tracts, individual tracts
were compared between DOC patients and healthy controls to extract
more detailed patterns of impaired structural connectivity in DOC pa-
tients (see Section 2.5 for a detailed description of the statistical
analysis).

Mean FA values for each pathwaywere calculated and used to quan-
tify and compare the integrity of the identified paths. Patients for whom
the specific pathway under investigation could not be identified with
the tractography algorithm (see Table S2) were not included in the re-
spective statistical analysis, as the inability to trace a pathway cannot be
taken as evidence that the pathway does not exist and, thus, the interpre-
tation of such a result is extremely challenging (Fernandez-Espejo et al.,
2012; Johansen-Berg and Rushworth, 2009). In order to assess and con-
trol for the effects of global white matter damage, global white matter
FA was calculated in controls and patients by thresholding the FA map
to 0.2 and calculating the mean FA values of the remaining voxels above
this threshold. White matter tissue is characterized by FA values above
0.2 (Mori and van Zijl, 2002) and thus such a threshold has been widely
used to restrict the analysis of DTI derived maps to only white matter
voxels in both healthy (Menzler et al., 2011) and pathological populations
(Cherubini et al., 2007; Fernandez-Espejo et al., 2012; Hua et al., 2008;
Palacios et al., 2011).

2.5. Statistical analysis

Statistical analyses were performed using IBM SPSS for Macintosh,
Version 22. Shapiro–Wilk tests of normality were non-significant for
all dependent measures (global white matter FA, fiber tract mean FA)
in DOC patients and healthy controls, and thus parametric statistics
were used.

Global white matter FA values were compared between DOC pa-
tients and healthy controls by means of one-way analysis of variance
(ANOVA). Group comparisons of fiber tract FA values were performed
using one-way analysis of covariance (ANCOVA) for non-lateralized
paths, and repeatedmeasures ANCOVA,with hemisphere aswithin sub-
jects factor, for lateralized paths. Group (HC/DOC) served as the
between-subjects factor. Linear correlations between each dependent
variable and global FA, as well as scanner (Trio/Prisma), were per-
formed in order to determine their inclusion as non-interest covariates
in the ANCOVA. Only global FA showed significant effects in the studied
tracts and thuswasused as a covariate in both cases. The same statistical
approach was employed for comparison of clinically conscious (MCS
and EMCS) and clinically unconscious patients (VS). Additionally, in
this case, the effect of time post ictus on the tracts was also tested.
This yielded only non-significant results and thus time post-ictus was
not included as a covariate in the ANCOVA. Subsequent comparisons
of individual fiber tracts were done by one-way ANCOVA with global
white matter FA as covariate. Significance was set a priori at p b 0.05.
CRS-R scores were correlated to composite fiber tract FA values
using Spearman's rank-order correlation, as CRS-R scores are ordinal
variables.

3. Results

All fiber tracts were successfully identified in all healthy controls
(see Fig. 1). The following fiber tracts were identified in all patients in
both hemispheres: Stri–FMC, Striatum–Thalamus, Striatu–DLPFC,
Thalamus–PCu, and TPJ–PCu. All other tracts were identified in at least
6 of 8 patients (See Table S2).

3.1. Differences between DOC patients and healthy controls

One-way ANOVA revealed significant differences in global white
matter FA between DOC patients and healthy controls (F1,14 = 4.662,
p = 0.049). This variable also correlated with our dependent variables
(individual pathways FA) so it was included as a covariate in the

http://findlab.stanford.edu/functional_ROIs.html
http://findlab.stanford.edu/functional_ROIs.html
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analysis of the individual pathways in order to control for the effect of
widespread (i.e. nonspecific) white matter damage. Repeated measures
ANCOVA on the lateralized composite fiber tracts revealed no sig-
nificant effect of hemisphere on cortico-cortical fiber tract FA values.
DOC patients had significantly lower FA values in these tracts (Fig. 2)
(F1,13=23.053, p b 0.001), aswell asmidline cortico-corticalfiber tracts
(i.e. PCu–FMC; F1,11= 21.155, p b 0.001) as compared to controls. There
was a significant effect of hemisphere on subcortico-subcortical and
subcortico-cortical fiber tract FA values and therefore the left and right
tracts were analyzed individually. Patients had significantly lower FA
values in the left (F1,13 = 11.594, p b 0.01) and right (F1,13 = 7.784,
p b 0.05) subcortico-cortical fiber tracts. In contrast, therewas no signif-
icant effect of group on subcortico-subcortical fiber tract FA values.
There was no significant group by hemisphere interaction in any fiber
tracts.

3.2. Differences between clinically conscious and unconscious patients

There was no significant difference in time post-ictus (t = 0.909,
p = 0.399) or age (t = 1.03, p = 0.341) between clinically conscious
(MCS& EMCS) and clinically unconscious (VS) patients. Therewas a sig-
nificant effect of hemisphere on subcortico-subcortical and subcortico-
cortical composite fiber tract FA values, and these tracts were then
analyzed by individual hemisphere. There were no significant dif-
ferences between conscious and unconscious patients on FA values in
subcortico-subcortical composite fiber tracts in the left (F1,5 = 0.357,
p N 0.05) or right (F1,5 = 0.353, p N 0.05) hemisphere. In contrast,
these groups significantly differed on FA values in subcortico-cortical
fiber tracts in the right (F1,5 = 12.607, p b 0.05) hemisphere. Addition-
ally, there was a trend towards significance in the left hemisphere
(F1,5 = 5.691, p = 0.063). Finally, conscious and unconscious patients
also differed in FA for lateralized cortico-cortical fiber tracts (F1,6 =
7.340, p b 0.05). No significant effects were identified for midline fiber
tracts (F1,4 = 6.062, p N 0.05).

3.3. Correlation of fiber tract FA values with CRS-R score

CRS-R scores were significantly correlated with subcortico-cortical
fiber tract FA values (see Fig. 2) in the left hemisphere (rho = 0.822,
p b 0.05), and there was a trend of borderline significance in the right
hemisphere (rho = 0.700, p = 0.053). CRS-R scores were significantly
correlated with cortico-cortical fiber tract FA values (see Fig. 2) in the
left (rho = 0.872, p b 0.01) and right (rho = 0.872, p b 0.01) hemi-
spheres. There was no significant correlation between CRS-R scores
and subcortico-subcortical fiber tract, midline cortico-cortical fiber
tract or whole brain white matter FA values.

3.4. Individual tract analysis

Individual tract analysis revealed that all tracts involving the PCu
had significantly lower FA in DOC patients relative to healthy controls
(See Fig. 4). Other tracts with significantly lower FA in DOC patients in-
cluded right hemisphere thalamus–FMC, bilateral DLPFC–FMC, left
DLPFC–TPJ, and left Striatum–DLPFC. Left hemisphere striatum–globus
pallidus had significantly higher FA in DOC patients. Detailed statistics
are reported in Supplementary Information Table S2.

4. Discussion

Here, we provide the first report of the structural integrity of white
matter fiber tracts connecting the nodes of the anterior forebrain
mesocircuit and related cortical areas in DOC. We found evidence of
significant impairment of both cortico-cortical and subcortico-cortical
connections, which correlated with clinical severity as established by
CRS-R scores. Moreover, clinically conscious patients differed from un-
conscious patients on subcortico-cortical and cortico-cortical fiber
tract integrity, further supporting the importance of these connections
in DOC.

4.1. Structural connectivity in the healthy brain

Twelve lateralized (total of 24) and one midline fiber tract(s)
were found in all healthy control subjects. Reconstructed subcortico-
subcortical fiber tracts matched well-defined striatopallidal, pallido-
thalamic and thalamostriatal connections of the classical basal ganglia
loops (Alexander and Crutcher, 1990; Alexander et al., 1986). Recon-
structed cortico-cortical fiber tracts within the default mode network
corresponded to those previously found between homologous brain re-
gions in tracer studies of non-human primates (Kobayashi and Amaral,
2003; Lavenex et al., 2002; Morris et al., 1999; Suzuki and Amaral,
1994), as well as DTI studies of humans (Fernandez-Espejo et al., 2012;
Greicius et al., 2009). Fiber tracts reconstructed from theDLPFCwere con-
sistent with previous reports describing connections with other areas of
the frontal cortex (Sallet et al., 2013), thalamus (Klein et al., 2010), stria-
tum (Leh et al., 2007), and the inferior parietal lobule, a subregion of the
TPJ (Mars et al., 2012). Finally, the identified subcortico-cortical fiber
tracts followed well-established thalamocortical/corticothalamic and
corticostriatal connections that have been found in tracer studies of
non-human primates (Guillery and Sherman, 2002; Selemon and
Goldman-Rakic, 1985), and validated in human DTI studies (Behrens
et al., 2003b; Leh et al., 2007).

4.2. Structural impairments in DOC

Our results supported our prediction that subcortico-cortical and
cortico-cortical projections related to the anterior forebrainmesocircuit
would show more severe damage as compared to the fiber tracts
interconnecting the subcortical nodes of the mesocircuit in DOC pa-
tients. Contrary to cortico-cortical and subcortico-cortical tracts, when
widespread white matter damage was accounted for, DOC patients did
not show significantly different FA values in subcortico-subcortical con-
nections relative to controls. The specific mechanisms underlying the
selectivity of this damage remain the subject of further investigation.
Nevertheless, in non-traumatic patients one plausible hypothesis for
the relative preservation of these subcortical fibers may relate to the
higher metabolic demand for oxygen and nutrients that characterizes
neurons with longer axons (Saab et al., 2013), which could make them
more susceptible to hypoxic–ischemic injury. In traumatic patients, dif-
fuse axonal injury (DAI; Meythaler et al., 2001) occurs predominantly in
brain regionswith adjacent tissues of different densities, such as the cere-
bral white–gray matter interface (Parizel et al., 1998). Longer-range
subcortico-cortical and cortico-corticalfiber tractsmay thus be particular-
ly susceptible to this form of injury due to their topographical location.
However, damage to subcorticalwhitematter, basal ganglia and thalamus
often appears in the context of both DAI (Adams et al., 1982, 2000;
Gentry, 1994; Hesselink et al., 1988; Johnson et al., 2013) and hypoxic–is-
chemic brain injury (HBI; Adams et al., 2000), although those studies did
not quantify whether the damage was affecting their subcortical or corti-
cal projections. Given the small number of patients in each etiological cat-
egory (TBI/HBI)wedid not perform formal comparisons between them. It
remains to be seen if etiological differences produce distinct patterns of
white matter injury, and this may be a viable future direction of study.

Our findings provide a structural correlate to the main mechanism
proposed by the mesocircuit hypothesis: loss of broad thalamic excit-
atory output as a result of a disinhibited and overactive globus pallidus
(Schiff, 2010, 2008). This mechanism is predicated on the existence of
inhibitory connections between the globus pallidus and thalamus (if
they were structurally disconnected, the thalamus would be released
from inhibition andwould be expected to bemore active). In identifying
a relative preservation of pallidothalamic fibers in DOC patients, our re-
sults provide a structural underpinning for this model (Fridman et al.,
2014). The mesocircuit model also suggests that a loss of striatal output



Fig. 4. Individual tract analysis comparing FA values between DOC patients and healthy controls. Blue solid lines represent fiber tracts with no significant differences. Red dashed lines
represent fiber tracts with significantly lower FA in DOC patients relative to healthy controls. Green dashed lines represent fiber tracts with significantly higher FA in DOC patients relative
to controls.Weight of line represents level of significance of difference between DOC patients and healthy controls. P value calculated by univariate analysis of covariancewithwhole brain
white matter FA as covariate. DOC: disorders of consciousness, HC: healthy control, FMC: frontal medial cortex, DLPFC: dorsolateral prefrontal cortex, Stri: striatum, GP: globus pallidus,
Tha: thalamus, TPJ: temporoparietal junction, PCu: precuneus, L: left hemisphere, R: right hemisphere. PCu–FMC tract is considered midline.
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to the globus pallidus is the cause of pallidal disinhibition. The precise
reasons for this proposed loss of striatal output are not known. Although
we failed to identify significant damage in striatopallidal fibers in our
DOC patients, very strong damage was found in some corticostriatal
and thalamocortical/corticothalamic fibers. Specifically, we found evi-
dence of significant structural damage to the connections between the
PCu and both the thalamus and striatum (bilaterally) in DOC patients,
perhaps suggesting a role for the Pcu in the dysregulation of the stria-
tum and thalamus.

In addition to this, we also found evidence of damage in fiber tracts
involving the DLPFC, which were more marked in the left hemisphere,
in the DOC group. Functional engagement of this region has previously
been used to demonstrate covert awareness in clinically vegetative pa-
tients (Naci andOwen, 2013; Naci et al., 2014). Interestingly, transcrani-
al direct current stimulationof the left DLPFChas recently demonstrated
some success in transiently improving signs of consciousness in MCS
patients (Thibaut et al., 2014).

4.3. Role of the precuneus

The PCu (sometimes referred to as PCu/posterior cingulate cortex) is
considered themain hub of the DMN (Cavanna and Trimble, 2006), and
has shown specific functional impairments in DOC (Boly et al., 2009;
Crone et al., 2015; Hannawi et al., 2015; Laureys et al., 2006;
Vanhaudenhuyse et al., 2010). A recent study has provided further sup-
port to the role of the PCu in DOC by demonstrating that its function as
main regulatory hub of the DMN (exertedwith positive inputs and neg-
ative outputs) was lost in DOC patients (Crone et al., 2015). We have
previously demonstrated structural disconnections of the PCu with the
thalami, as well as the TPJ (Fernandez-Espejo et al., 2012). The results
reported here expand thosefindings in providing evidence of significant
damage in all the studied fiber tracts connecting the PCu with both cor-
tical (i.e. TPJ, FMC) and subcortical (i.e. thalamus, striatum) areas. No
other region in our study had such consistent evidence of damage. The
mechanisms by which the PCu may be particularly susceptible to both
TBI and HBI injury are not yet known. However, it is plausible that its
long afferent and efferent axonal fibers, which connect it to distant
cortical and subcortical targets (Cavanna and Trimble, 2006), along
with its high metabolic activity at rest (Cavanna and Trimble,
2006), may make this structure especially vulnerable to the mecha-
nisms of damage discussed above (i.e. those affecting long-range
connections).

In any case, the structural disconnection of the PCu from the other
nodes of theDMNcould explain the lack of organized resting state activ-
ity previously described for DOC patients (see Hannawi et al., 2015 for a
review). Furthermore, the PCu is widely connected to other cortical and
subcortical regions (Cavanna and Trimble, 2006), and in addition to its
role in the DMN, it is highly involved in visuo-spatial imagery and
episodic memory retrieval networks (Cavanna and Trimble, 2006).
Based on these somewhat opposed properties (Cavanna and Trimble,
2006; Crone et al., 2015), one could speculate that the PCu may act as
a regulatory ‘switch’ to shift brain dynamics from inward-focused self-
referential activity to task oriented activity. A recent large study of
healthy adults has indeed found the PCu to have increased functional
connectivity with the right fronto-parietal network (known to mediate
external, or task-oriented awareness; Vanhaudenhuyse et al., 2011)
during task performance, and with the DMN during rest (Utevsky
et al., 2014). Interestingly, both networks have been related to clinical
severity in severely brain injured patients, with locked-in patients hav-
ing the greatest metabolic network activity and VS patients having the
least (Thibaut et al., 2012). A complete structural disconnection of the
PCu from other cortical and subcortical regions, as described here,
may explain the (total or partial) reduction of its regulatory effect there-
by impairing coordination of appropriate resting and non-resting state
brain network dynamics. On this basis, it could be speculated that VS pa-
tients may be ‘trapped’ in a brain state that resembles neither resting
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state nor goal directed activity due to the inability of the PCu to coordi-
nate the inward focused state and the switch to outward focused brain
states.

4.4. Conclusion

Wepropose a strong relationship between cortical areas in the DMN
and the anterior forebrain mesocircuit in the neural basis of the DOC,
which appears to be mediated by the PCu. Specifically, we showed
that the subcortical mesocircuit is structurally intact, and the damage
mainly affects projections to and from the PCu. This provides a structur-
al framework to integrate theories based on mesocircuit dysfunctions
(Giacino et al., 2014) with those pointing at the DMN (Hannawi et al.,
2015) as causative of the lack of awareness in DOC patients.
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